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Projective Up-Sampling – Remove Noises in Blind Spots

Truncated Inverse Sigmoid Volume Sampling – Sampling Around Surfaces 

5. Conclusion
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Dense LiDAR Mapping

• Consumes large amount of memory

Neural LiDAR 3D reconstruction

• Highly memory compact & resolution

• Robust for outdoor 3D reconstruction

• Applications in urban planning, mapping 

• Dynamic object are omitted in reconstruction

• Model is robust to parameter reduction, reasonable construction 

result achieved with about 12500 parameters on single object

• Perspective up-sampling is effective in eliminating noise in blind 

spots

• Reconstruction quality is sensitive to point cloud registration quality

• Reconstruction result is smoother with smaller batch size

Loss Functions – Combined Loss

Reconstruction 

Results

Distance Loss

𝑑∗ = Measured
መ𝑑 = Σ𝑖

෠ℎ𝑖𝛿𝑖

ℒd = L1_Loss(d∗, ෠d)

𝓛𝐩𝐫𝐨𝐩𝐨𝐬𝐞𝐝 =  𝛌𝐓𝓛𝐓 + 𝛌𝐡𝓛𝐡 + 𝛌𝐝𝓛𝐝
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Major Contribution

• Proposed projective up sampling to mitigate noises

• Combined losses to achieve balanced reconstruction result

Future Work

• Conduct quantitative comparison 

• More challenging settings & scenes or objects
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4. Discussion

Data

• 3 datasets collected on objects around 

White City campus, with Livox Horizon 

LiDAR sensor [1], hand-held

Model Architecture

• Architecture inspired by NeRF in the wild [2]

• Soft Plus for output layer activation function 

to encourage non-negative value for density

• Model rendered with the Marching Cube 

Algorithm

3. Experiment & Result

1. Motivation 2. Method
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Gradient Flow:
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(Fully Connected + ReLU) × 4

Fully Connected + Soft Plus

Skip Connect
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γ(∙) Positional encoding

h∗ = grad( 1 − T∗)

෠hi = ෡Ti 1 − exp σiδi

Termination  
Distribution Loss

ℒh = KL_Loss(h∗, ෠h) 

h∗ :

ℒproposed

Cumulative 
Transmittance Loss

෡Ti = exp −Σj
i−1σjδj

ℒT = BCE_Loss(T∗, ෡T) 

T∗ = 1 − sigmoid(d∗ − x)

T∗ : 
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