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Reconstructing scenes from LIiDAR data with Neural Radiance Field
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* Highly memory compact & resolution
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3. Experiment & Result
Data Reconstruction L+ Ly Lproposed

» 3 datasets collected on objects around Results
White City campus, with Livox Horizon
LiDAR sensor [1], hand-held

Model Architecture

 Architecture inspired by NeRF in the wild [2]

» Soft Plus for output layer activation function
to encourage non-negative value for density

* Model rendered with the Marching Cube
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4. Discussion 5. Conclusion

» Dynamic object are omitted in reconstruction Major Contribution
« Model is robust to parameter reduction, reasonable construction * Proposed projective up sampling to mitigate noises

result achieved with about 12500 parameters on single object « Combined losses to achieve balanced reconstruction result
» Perspective up-sampling is effective in eliminating noise in blind Future Work

spots » Conduct quantitative comparison
» Reconstruction quality is sensitive to point cloud registration quality * More challenging settings & scenes or objects
* Reconstruction result is smoother with smaller batch size Reference
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